MODULE 2

APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

PARTIAL DIFFERENTIAL EQUATIONS OF ENGINEERING

A number of problems in engineering give rise to the following well-known partial differential equations :

2
(i) Wave equation : %—';- =c* g:—:} "
(i) One dimensional heat flow equation : % =c? %
(itt) Two dimensional heat flow equation which in steady state becomes the two dimensional Laplace’s
> u  u
equatlon s 5—2‘ + ;2— =0.

(iv) Transmission line equations.
(v) Vibrating membrane. Two dimensional wave equation.
(vi) Laplace’s equation in three dimensions.

Besides these, the partial differential equations frequently occur in the theory of Elasticity and
Hydraulics.

Starting with the method of separation of variables, we find their solutions subject to specific boundary
conditions and the combination of such solution gives the desired solution. Quite often a certain condition is not
applicable. In such cases, the most general solution is written as the sum of the particular solutions already
found and the constants are determined using Fourier series so as to satisfy the remaining conditions.

VIBRATIONS OF A STRETCHED STRING—WAVE EQUATION

Consider a tightly stretched elastic string of length / and fixed ends A and B and subjected to constant
tension T (Fig. 18.1). The tension T will be considered to be large as compared to the weight of the string so that
the effects of gravity are negligible.

Let the string be released from rest and allowed to vibrate.
We shall study the subsequent motion of the string, with no ex-
ternal forces acting on it, assuming that each point of the string
makes small vibrations at right angles to the equilibrium posi-
tion AB, of the string entirely in one plane.

Taking the end A as the origin, AB as the x-axis and AY
perpendicular to it as the y-axis ; so that the motion takes place
entirely in the xy-plane. Figure 18.1 shows the string in the
position APB at time ¢. Consider the motion of the element PQ of the string between its points P(x, y) and
Q(x + &, y + dy), where the tangents make angles y and y + dy with the x-axis. Clearly the element is moving
upwards with the acceleration 0%y/dt%. Also the vertical component of the force acting on this element.

= Tsin (y + dy) — T sin y = Tlsin (y + dy) — sin y|

Fig. 18.1

dx dx
If m be the mass per unit length of the string, then by Newton's second law of motion, we have

%y _ T {Z}u& _{%},

=T [tan (y + y) - tan y], since  is small = T[{Q},.u -{-al}x]

oy _ {ay} {ay} .
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Taking limits as @ — P i.e., dx — 0, we have ?ﬂ' pe where ¢ = = (1)

This is the partial differential equation giving the transverse vibrations of the string. It is also called the
one dimensional wave equation.

(2) Solution of the wave equation. Assume that a solution of (1) is of the form
2 = X(x)T(t) where X is a function of x and T is a function of ¢t only.



2 2
Then Lo rmilrr
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Substituting these in (1), we get XT" = ¢*X"T' i.e., X AT w(2)
¢

Clearly the left side of (2) is a function of x only and the right side is a function of ¢ only. Since x and ¢ are
independent variables, (2) can hold good if each side is equal to a constant k (say). Then (2) leads to the ordinary
differential equations :

d’X d*T
T ~-kX=0 (3) and ;{2- ~ke*T=0 .{4)
Solving (3) and (4), we get

(i) When k is positive and = p*, say X = c,e" + e, ; T = c ™ 4 ¢ "',

(ii) When k is negative and = - p? say X = c; cos px + ¢;sin px ; T = ¢, c0s cpt + ¢ sin cpt.
(iit) When k is zero. X =gt + ¢y T= ¢t + ¢,

Thus the various possible solutions of wave-equation (1) are

y = (c,e + ¢, M) (c ™ + c ™) ()
¥ = (e, cos px + ¢ sin px)(c; cos ept + ¢g sin ept) ..(6)
y=lege + e pg)ey,t +¢4) A7)

Of these three solutions, we have to choose that solution which is consistent with the physical nature of
the problem. As we will be dealing with problems on vibrations, y must be a periodic function of x and . Hence
their solution must involve trigonometric terms. Accordingly the solution given by (6), i.e., of the form

¥ =(C, cos px + C, sin px) (C, cos cpt + C, sin cpt) .(8)

is the only suitable solution of one dimensional wave equation.

L) y 3 y y
Lal;
& e o g = P’y _ 2%
Solution. The vibration of the string is given by 3 =¢ E (2)
As the end points of the string are fixed, for all time,
y(0,8)=0 ..(i1) and ¥, t)=0 -Adid)
Since the initial transverse velocity of any point of the string is zero,
therefore, (Qy_) =0 ...(iv)
o Jruo
Also ylx, 0) = a sin (rx/l) (v)

Now we have to solve (i) subject to the boundary conditions (it) and (iii) and initial conditions (iv) and (v).
Since the vibration of the string is periodic, therefore, the solution of (i) is of the form

¥x, t) = (C, cos px + C, sin px)(C, cos cpt + C, sin cpt) -Avi)
By (i), 0, t) = C(C, cos ept + C, sin ept) =0
For this to be true for all time, C, = 0.
Hence ¥lx, t) = C, sin px(C, cos cpt + C, sin cpt) (vii)
and % = C, sin px [Cy(—cp . sin cpt) + C (cp . cos cpt))
By (iv), (%)‘-": C, sin px . (C, ¢p) = 0, whence C,Ccp = 0.

If C, = 0, (vii) will lead to the trivial solution y(x, ) = 0,
the only possibility is that C, = 0.
Thus (vii) becomes y(x, t) = C,C, sin px cos cpt ..{viit)



By (i), ¥, ) = C,C, sin pl cos cpt = 0 for all £.

Since C, and C, #0, we have sinpl =0. . pl=nn,ie,p=nwl, where n is an integer.

Hence (i) reduces to  y{x, ) = C,C, sin ?m%{

[These are the solutions of (i) satisfying the boundary conditions. These functions are called the eigen functions
corresponding to the eigen values ) = cnn/l of the vibrating string. The set of values X, L, A, ... is called its spectrum.|

Finally, imposing the last condition (v), we have y(x, 0) = C,C, sin % =@ sin ?
which will be satisfied by taking C,C;=aandn=1.

net

Hence the required solution is y(x, f) = a sin T co8 = . ix)

© Example 18.4. A tightly stretched string with fixed end points x = 0 and x = | is initially in @ positio
mbyysy,dm’(axll).lfuurdeandﬁwnmtﬁvmtkamﬁ &Mm&(&ﬁ £
(Rajasthan, 2006 ; V.T.U., 2003 ; J.N.T.U., 2002)
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Solution. The equation of the vibrating string is ;y =c? -g;—i- .{1)
The boundary conditions are y(0,¢)=0,y(/,8)=0 (i)
Also the initial conditions are y(x, 0) = y, sin® (1’11] i)
a (gy_) =0 Aiv)
at t=0

Since the vibration of the string is periodic, therefore, the solution of (i) is of the form
yix, t) = (¢, cos px + ¢, sin px) (¢g cos cpt + ¢, sin ept)
- By (1), 0, t) = ¢ (c, cos cpt + ¢, sin cpt) =0
For this to be true for all time, ¢, = 0.
¥x, t) = ¢, sin px (c4 cos cpt + ¢, sin cpt)
Also by (i), ¥, t) = ¢, sin pl (¢, cos cpt + ¢, sin cpt) = 0 for all ¢.
This gives pl = nx or p = nw/l, n being an integer.

Thus yix,t)=c, sm%u-(c, cos-c';—"+c, sin 59‘2] (V)
g:( mﬂ)ﬂ(_c ain._cnu+c m_cnﬂ)
i O I W e e bl

o (Gl
By (iv), (a‘ - Lo ¢ =0, iec,=0.

nnx nnct_b . nnx nnet

Thus (v) becomes y(x, t) = ¢, 8in o8 == ,,sm—l—oos—l—
Adding all such solutions the general solution of (i) is
ylx, t)= Z b, sin mlu cos# wAvi)

n=1




- from (ii), y,,sm’—st,sm

nwl
. B nx
3sin — - sin —
or Yo —-L‘—‘ b,nn—”—‘+b,nn£+b,un37u+
Comparing both sides, we have
by =3y/4,b,=0,by=~y/4,b,=b;=..=0.
Hence from (vi), the desired solution is
g R Ry B gt
yix, 1) nnlcosl . lml'

. : . Py _ a’ o’y
Solution. The equation of the string is —5- a:’ a',

The boundary conditions are y(0,t) =0, y(l, t) =0
Also the initial conditions are y(x, 0) = px(/ - x)

?z] "
" (a t=0 '
The solution of (i) is of the form
¥lx, t) = (¢, cos px + ¢, sin px) (¢4 cos cpt + ¢, sin cpt)
By (i), 0, 1) = c,(cq cos cpt + ¢ sin cpt) = 0

Forthmtobeh‘ueforalltnme.c,=0
ylx, t) = ¢, sin px (cy cos cpt + ¢, sin cpt)

Alsoby(u) ¥(I, 1) = ¢, sin pl(cg cos cpt + ¢, sin cpt) = 0 for all t.

This gives pl =nn or p = nwl, n being an integer.

Thus y(:.t)=c,sin%u-(c,em£’ig+c,sin#-]
Q:(%m_"’i)ﬁ(_camﬂ”‘;"‘u!ﬂ)
at §:d 3 l l

by (iv) (-‘?-‘y—) =(o¢lin—n£)ﬂr- ey =0
' & )0 P B
Thus (v) becomes ¥x, t) = ceq SID mcosTm b,m"?m%

Adding all such solutions, the general solution of (i) is
nnet
(x,8)= mﬂm—

yix nz_;bn 1

From (iii), plx -2 =y(x, 0= Y b, mEIE
n=1

where b,= % I: ulx - x*)sin n—ln-d-t. by Fourier half-range sine series

,%&U (lx—!z)('— %"] [ - K(l-h)(- m';nwuszx]

...(iv)

o)

lvi)




!
2 1 gl COSnRX _2 g g sinamdl [l sin ndl
-l'nx{L(l = l dx} mt““ e nwl f»( N nwl -
2 2 onmx ,  dpl | -cosamdl [ 4w
sl dx 27| " pnll [ n"sll (- 1))

Hence from (vi), the desired solution is
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yix, t) 3 "gl 3 sin ] i
Bt 1 . (2m-1=n (2m — 1)met
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Solution. The equation of the vibrating string is %;’Z =c* %z% i)
The boundary conditions are y(0, ) =0, y(/, 1) =0 i)
Also the initial conditions are y(x, 0) = 0 i)
dy ) . 3 ™ :
and oty = —_ aed
( L Uy Sin 1 (iv)

Since the vibration of the string is periodic, therefore, the solution of (i) is of the form
ylx, t) = (¢, cos px + ¢, sin px) (¢, cos cpt + ¢, sin cpt)

By (if), Y0, t) = ¢ (e, cos ept + ¢, sincpt) = 0
For this to be true for all time ¢, = 0.
»x, t) = ¢, sin px (¢, cos cpt + ¢, sin cpt)
Also ¥, t) = ¢, sin pl (¢, cos ept + ¢, sin ept) = 0 for all ¢.
This gives pl=nn or p="Tn,nbeinganinteger.
Thus y(x,:)=czsin$(cswsﬂ:£t+c.sin—c’%z-t)
By (iii), 0 =cyey sin% forallxie,cp =0
J’(.!t.t)=b,lain-'-'-;Pr-sinﬂ?—r where b, = c,e,
Adding all such solutions, the general solution of (i) is
. nmx ., cnnd
yx, t) = Zb,.mTﬂnT )

Q,z= o ARX Cnm ennt
Now X Zb,,n—l T
‘ g B QJ Ry cin T
By (iv), v, sin 7 (at - ’b,,sml
& i E.. B i 1y Sn—x. i E .. 1 - N Nk ind
or 4(3unl sin 7 Z 7 b, sin 7 [ sin 36 =3 sin 6 -4 sin’ 6]
cn o 2em, . 2m 3ex 3mx
-qunnT+Tb,smT+Tb,smT+



Equntingeoeﬂicienuﬁvmbothlidu we get

]
\ -._313-; =_£’L atiabin.. &
5 S, T by=b, =by=..=0
Substituting in (v), the desired solution is

2
Solution. The equation of the vibrating string is 3“: =c? %y_ 1)
The boundary conditions are ~ y(0,#)=0,y(,¢)=0 i)
Also the initial conditions are y(x,0)=0 L Auid)
and (2) =il -2) iv)
ot Jy-o
As in example 18.6, the general solution of (i) satisfying the conditions (ii) and (iii) is
. nnet
y(x.t)-”;b,, o sm-l— v)
¥, in I coq 1RCE (E)
a ;,b“"“ i
By (iv), w-x)=(Q] =Y nb, sin "=
: Y ] l

=%Iaz-:’)(-u—"tm 1) (- h)[-—%un ]+(—2)(%m#)[

411’ aar
X3 ——= (1 -cos nx) = ;3';’1- [1-(=1)]
P 8A® ;
or b, m“ll -(=1]= g - taking n = 2m - 1.
Hence, from (v), the desired solution is
B 1 @2m-Drx . (2m - Dret
. Z(zmn"m i

Solution. l.etBandCbethepomhofﬂ:etmechonoftheshngOA(-l)(ﬁc 18.2). Initially the string
is held in the form OB’C’A, where BB’ = CC’ = a(say).



‘T'he displacement y(x, t) of any point of the string 1s given by

2
% -ady D)
and the boundary conditions are
y0,6)=0 (i)
»,t)=0 ..(ti)
(%) =0 .(iv)
t=0

The remaining condition is that at ¢ = 0, the string rests in the form
of the broken line OB’C’A. The equation of OB’ is y = (3a/l) x ;

2a ! 3a
i f i IR —— - [ s B -
the equation of B'C’ is y-a (113)( 3] ie. y 7 (I -2x)
and the equation of C’A is y= T(x-l)

Hence the fourth boundary condition is

y(x,0)=%x.05xsé
... ..(v)

-—lzx —<SxSs—
( xs

1
]
-3—0-(:: 1), msxsl

As in example 18.6, the solution of (i) aatxsfymg the boundary conditions (ii), (i) and (iv), is

Yo, )=b, sm$m$ [Where b, = C,C,|
Adding all such solutions, the most general solution of (i) is
¥x,0=Y b,sin "—1’5 cos # .Avi)

Putting t = 0, we have y(x, 0) = z b, sin (i)

n=1
n=1 *
In order that the condition (v) may be satisfied, (v) and (vi/) must be same. This requires the expansion of
y(x, 0) into a Fourier half-range sine series in the interval (0, /).

by (1) of § 10.7,
w3 [P im0 3 AR 8 e Thinha 28
b,,-l“o 2 sin "% d + j ‘(1 20)sin "2 dx+j;“(x Dsin ™ dx]
_6a {cos(mo:/l)} _sln(rm:ll)
P (nwl) (nwl)?

203

(nrdll) sin (nmll)

o i) e TRy Al 0 WO
X i ){ (nl) } ( ){ (ndl? HW
m}

Ga[[ 2 nam mt] one 2% . 2 PP nn
-— + —— C08

cos(nmt/l)}_ n _sin(ml:z/l)
(nw/l) 1 ()

+ (x-l){—

Tl m™ s e " 3) 8 a8 Gnm 3

+ﬂ_25inﬂ- immq.isinm
3 (3 3 aff 0 3



_6a _312 (sm"—"—mm)
2 n’n® 3 3

18a aia . 2nmw nx nr
‘n’ [l+(—l)"] [ smT= (mt--?)--—(—l)" sm?
Thus b, = 0, when n is odd.
36a mt
5 u’ —, when n is even.
Hence (vi) gives
yao =Y %sﬂn%’%iﬂ%m# [Take n = 2m]
n=24,..
-g?-i —l—-sinzmnsinzmmcoszmm (vit)
n’ = m? 3 l l

Putting x = I/2 in (vi), we find that the displacement of the mid-point of the string, i.e. y(I/2, t) = 0, because
sin mn = 0 for all integral values of m.
This shows that the mid-point of the string is always at rest.

(3) D’Alembert’s solution of the wave equation

a’y P’y
= 2&:’ A1)
" Let us introduce the new independent variables u = x + ¢t, v = x — ¢t so that y becomes a function of u and v.
y >
'l‘henat N 3
and .a_zlai(ﬁy_+.al) (ay ay] (by ay) ay 2azy %y
T x\ou ) oulodu auauau’auauab
5 %y o’y oy Py
Similarly, s;-=c2 — - zauav 7
9?
Substit 1 t — =0 w2
ubstituting in (1), we ge' %0 (2)
Integrating (2) w.r.t. v, we get % = flu) ..(3)

where f{u) is an arbitrary function of . Now integrating (3) w.r.t. u, we obtain

y= If(u)du +ylv)
where y(v) is an arbitrary function of v. Since the integral is a function of 1 alone, we may denote it by ¢(u). Thus
y=0(u) + y(v)
ie. ylx, t) = O(x + ct) + ylx —ct) ..(4)
This is the general solution of the wave equation (1).
Now to determine ¢ and y, suppose initially u(x, 0) = fix) and dy(x, 0)/dt = 0.

Differentiating (4) w.r.t. ¢, we get %‘,_y_ =cd'(x + ct) —oy'(x —ct)

Att=0, ¢'(x) = y'lx) ...{B)
and ylx, 0) = ¢(x) + y(x) = fix) ..(6)
(5) gives, olx) = yix) + k
(6) becomes 2y(x) + k = f(x)

or ylx) = %[ﬂx]-k] and o(x) = %[f(x“k]



Hence the solution of (4) takes the form

y(x,t)=%lf(x+ct)+kl+%lf(x-ct)-k]:f(xd»ct)-ff(x-ct) A7)
which is the d’Alembert’s solution* of the wave equation (1) (V.T.U.,, 2011 8)

yix, t)= %lﬂx+ct)+f(;¢-cl)l

s % lk{sin (x + ct) - sin 2(x + i)} + k{sin (x — ct) — sin 2(x —t))]

= k|sin x cos ¢t — sin 2x cos 2ct]
Also y(x, 0) = k(sin x - sin 2v) = flx)
and dy(x, 0¥/t = k (~ ¢ sin x sin ct + 2¢ sin 2« sin 2ct),_ =0
i.e., the given boundary conditions are satisfied.

(1) ONE-DIMENSIONAL HEAT FLOW

Consider a homogeneous bar of uniform cross-section a(cm?). Suppose that the sides are covered with a
material impervious to heat so that the stream lines of heat-flow are all parallel and perpendicular to the area o.
Take one end of the bar as the origin and the direction of flow as the positive x-axis (Fig. 18.3). Let p be the
density (gr/cm?), s the specific heat (cal./gr. deg.) and k the thermal conductivity (cal./cm. deg. sec.).

Let u(x, — t) be the temperature at a distance x from O. If du be
the temperature change in a slab of thickness & of the bar, then by t\ EE'\ P‘\

§ 12.7 (if) p. 466, the quantity of heat in this slab = spa 8x6u. Hence the R,—"‘?‘\\ ‘\:\\—’ R,
rate of increase of heat in this slab, ie., spc&x%‘- =R, - R,, where R, 6 : 4= Y %
and R, are respectively the rate (cal /sec.) of inflow and outflow of heat. Fig. 18.3
Now by (A) of p. 466, R, = -ka(f) and R, =-ka(ﬁ)
o )y X s

the negative sign appearing as a result of (i) on p. 466.
du du du : du k [(Qwlox),, & — (dulox),
—=—ko| — ko) — Ly —=—
Hence spudx x (&x),,+ (ax),,,, Le 5 3P{ =

Writing k/sp = ¢, called the diffusivity of the substance (cm?%sec.), and taking the limit as &x — 0, we get

Ju *u
R = c’ *QF | k)
This is the one-dimensional heat-flow equation. (V.T.U., 2011)

(2) Solution of the heat equation. Assume that a solution of (1) is of the form
ulx, t) = X(x) . T(¢)

where X is a function of x alone and T is a function of ¢ only.

Substituting this in (1), we get

XT' = 2X"T, i.e., X"X = T'/c*T .(2)

Clearly the left side of (2) is a function of x only and the right side is a function of ¢ alone. Since x and ¢ are
independent variables, (2) can hold good if each side is equal to a constant % (say). Then (2) leads to the ordinary
differential equations

d*’xX dT
F-Hﬂ .8)  and E-kcfhu .(4)

Solving (3) and (4), we get



(i) When k is positive and = p?, say :
X=cie™ +ce?,T= c,ta"';
(ii) When k is negative and = - p?, say :
X=ccospx+c sinpx, T= cge""'x';

(iit) When k is zero :
X=cx+ey,T=cy
Thus the various possible solutions of the heat-equation (1) are
u = (cye™ + e ™) cye” P .5)
u = (¢, cos px + ¢, sin pa:)q,e""" ..(6)
u = (ex + cgleg WAT)

Of these three solutions, we have to choose that solution which is consistent with the physical nature of
the problem. As we are dealing with problems on heat conduction, it must be a transient solution, i.e., u is to
decrease with the increase of time £. Accordingly, the solution given by (6), i.e., of the form

u = (C, cos px + C, sin px)e“"’" ..(8)
is the only suitable solution of the heat equation. )

ARl uth ) .

. ou du

Solution. The solution of the equation =" Py i)
is ulx, t) = (e, cos px + ¢, sin px) e i)

When x =0, u(0, ) = c,c”’ *=0 ie, ¢;=0.

. (i) becomes ulx, t) = ¢, sin pxe™** . iii)

Whenx=1, u(l.t)=c,sinp.e“'"=00rsinp=0

Le., p =nn.
. (ii)reducesto  ulx,t)=b, e ™ * sin nnx where b, =c,
Thus the general solution of (i) is u(x, £)= )" b,e™"™" sin nnx Aiv)

When ¢ = 0,3 sin nrx = u(0,)= Y. be™"*" sin nnx

n=1
Comparing both sides, b, =3
Hence from (1v), the desired solution is

ulr,)=3Y ¢ """ sin nm.

ne1




Solution. Substituting u = X(x)T(¢) in the given equation, we get

XT' = a?X"T ie, XX= L. = - k? (say)

o’T
2
“’h KX =0 and 204 K0T =0 A1)
Their solutions are X =c, cos kx + ¢, sin kx, T = cge™ " ™" (2)
If k? is changed to - k2, the solutions are
X=c o™ +cge ™, T'= cge™ «(3)
If k% = 0, the solutions are X=cx+c,T=¢, .(4)

In (3), T 5 = for t — o therefore, u also —» = i.e., the given condition (i) is not satisfied. So we reject the
solutions (3) while (2) and (4), satisfy this condxhon

Applymg the condition (ii) to (4), we get ¢, =

u=XT= c,c, a, (say) ..5)
Fro .. kx - Ka't
m (2), a—=(-c,sin + ¢, cos kx) keye
Applying the condition (ii), we get ¢, = 0 and — ¢, sin &/ + ¢, cos kl = 0
ie., ¢, =0 and kl=nr(nan integer)
- n'nta’t
u =c,coskx.c,e""“ =a,,l:lm[E]c ..(6)
1 o
Thus the general solution being the sum of (5) and (6), is
u = ag, + Xa,cos (nmx/l) o weatur A7)

Now using the condition (iii), we get
Ix — x* = a, + Za,cos (nnx/l)
This being the expansion of Ix — x? as a half-range cosine series in (0, /), we get

oon} fue-straesi| - [ -
and a,=2 [ x- :’)«»de_-lax x*)(—-smi;"i-]
—a- 2:){ fx, nn]+( 2)( f‘,dnl'-;i)[)
_%{o-—,-’-r;(muunno}_-n%% when n is even, otherwise 0.

Hence taking n = 2m, the required solution is
- - li 2 —l—m(ﬁlg)f‘ﬁm'




Solution. (a) Let the equation for the conduction of heat be

du Pu y
5 = cZ ﬁ i)
Prior to the temperature change at the end B, when ¢ = 0, the heat flow was independent of time (steady
state condition). When u depends only on x, (i) reduces to 9%u/dx? = 0.
Its general solution isu =ax + b . ii)

Since u = 0 for x = 0 and u = 100 for x = /, therefore, (ii) gives b = 0 and a = 100/..

Thus the initial condition is expressed by u(x, 0) = 1—?2: i)
Also the boundary conditions for the subsequent flow are
u(0, t) = 0 for all values of ¢ .(iv)
and ull, t) = 0 for all values of ¢ .(v)

Thus we have to find a temperature function u(x, t) satisfying the differential equation (i) subject to the
initial condition (ifi) and the boundary conditions (iv) and (v).
Now the solution of (i) is of the form

u(x, t) = (C, cos px + C, sin px)e” o't i)
By (iv), (0, ) = C, e 7" =0, for all values of t.
Hence C, = 0 and (vi) reduces to ulx, t) = C, sin px . e ...{vii)

Applying (v), (vii) gives u(l, t) = C, sin pl . ¢~ 7" =0, for all values of t.
This requires sinpl =0 i.e.,pl =nnas C,#0. .. p=nwl, wheren is any integer.

Hence (vii) reduces to u(x, t) = b, sin # e RUE where 5, =C,

[These are the solutions of (1) satisfying the boundary conditions (1v) and (v). These are the eigen functions
corresponding to the eigen values A, = cnn/l, of the problem.)
Adding all such solutions, the most general solution of (i) satisfying the boundary conditions (iv) and (v) is

utx, )= 3, b, sin MFE. T - Avii)
n=1
Putting ¢ = 0, ulx, 0) = Z b, sin = %)

In order that the condition (iii) may be satisfied, (1i7) and (ix) must be same. This requires the expansion
of 100x/1 as a half-range Fourier sine series in (0, /). Thus

lOOx 1 100x . nmx
= Zb nnT where b, = Io = e

n=1

: 2
_ 200 x{_eos(nm/l) — ] sin (amx /1) _200( -l—-cosnu)=@9 T
I* (nrc/1) (nn/l? 2 nn nn

- o+ 1
Hence (viii) gives u(x, t) = 3‘,%9 ¥ ‘-‘—‘—n’-— sin 25, ¢ teentife

l
(b) Here the initial condition remains the same as (iii) above, and the boundary conditions are
u(0, t) = 20 for all values of ¢ %)
u(l, t) = 80 for all values of ¢ lxi)

In part (a), the boundary values (i.e., the temperature at the ends) bemg zero, we were able to find the
desired solution easily. Now the boundary values being non-zero, we have to modify the procedure.

We split up the temperature function u(x, ) into two parts as
ulx, t) =u, (x) +u,(x, 1) . xit)

where u_(x) is a solution of (i) involving x only and satisfying the boundary conditions (x) and (xi) ; u, (x, ) is then
a function defined by (xii). Thus u_(x) is a steady state solution of the form (ii) and u, (x, ) may be regarded as a
transient part of the solution which decreases with increase of .



Since u, (0) = 20 and u_(!) = 80, therefore, using (ii) we get

u,(x) = 20 + (60/x ..Axii)

Putting x = 0 in (xi7), we have by (x),
w0, t) = u(0,t) —u (0)=20-20=0 w(xiv)

Putting x =/ in (xii), we have by (xi),
ull,t)=ull,t) —ull)=80-80=0 {xv)
Also uy(x, 0) = ulx, 0) — u,(x) = 100 _(60x 20) [by (ii) and (xiii)
=4 20 _ . xvi)

Hence (xiv) and (xv) give the boundary conditions and (xvi) gives the initial condition relative to the
transient solution. Since the boundary values given by (xiv) and (xv) are both zero, therefore, as in part (a), we

- . -c*p't
have u(x, t) = (C, cos px + C, sin px) e
By (xiv), ul0,8) = Ce - 0, for all values of t.
Hence C, = 0 and ufx,t)=C,sinpx. ¢ F" . xvii)
2
Applying (xv), it gives  u,(, ) = C, sin ple “*' = 0 for all values of ¢.
This requires sinpl =0, i.e. pl = nnas C, # 0. p = nn/l, when n is any integer.

Hence (xvii) reduces to u(x, t) = b_ sin #e' CHE where b, = C,.

Adding all such solutions, the most general solution of (xvii) satisfying the boundary conditions (xiv) and
(xv) is

a? e 1 I
ufx )= 3 b, sin"Ee T .xviii)
n=1
Putting ¢ = 0, we have u(x,0)= Y. b, sin™7~ . (xix)
n=1

In order that the condition (xvi) may be satisfied, (xvi) and (xix) must be same. This requires the expan-
sion of (40/]) x — 20 as a half-range Fourier sine series in (0, /). Thus

40x _ o0 _ ¥ b sin MR = 2 [ (40x _ 50\ i PRX 4, 40
—T——zo-glb“sm 7 where b"-lIO(l 20'sm 7 dx ux(li-coamt)

ie,b =0,whenn is odd ; = - 80/nx, when n is even

Hence (xviii) becomes u/(x, t) = Z (ﬁ) sin-'%-e","""" [Take n = 2m|
aee \ B
_ 40 ¢ 1 . 2mrx _«fmiui
L ...1"'8“‘ = B e xx)

Finally combining (xiii) and (xx), the required solution is

2m1u: ~4ctm e
T . e &

40x 40 <« 1 .
L Bt T

ST S TR N
A s et e,
I to 40°C and
ou_ 2 du .
Solution. Let the heat equation be %= P LA
In steady state condition, u is independent of time and depends on x only, (i) reduces to
Pulax® =0. . Aid)

Its solution is u = a + bx
Since u = 30 for x = 0 and u = 80 for x = 20, therefore a = 30, b = (80 - 30)/20 = 5/2
Thus the initial conditions are expressed by



u(x,0)=30+ %x ..Aiii)

The boundary conditions are u (0, ¢) = 40, u (20, t) = 60
Using (if), the steady state temperature is

ulx,0)=40 +

To find the temperature « in the intermediate period,
ulx,t)=u_(x)+u,l(xt)
where u_ (x) is the steady state temperature distribution of the form (iv) and u, (x, ¢) is the transient tempera-
ture distribution which decreases to zero as t increases.
Since u, (x, t) satisfies one dimensional heat equation

60 - 40
20

ulx, ) =40 + x + ) (a, cos px + b, sin px)e P! )

w0,t)=40=40+ ¥ a,e "' whencea, = 0.

n=1
(v) reduces to ulx, t)=40+x + Zb,,sinpxe"’" wvi)
n=1
Also w(20,6)=60=40+20+ 3" b, sin 20 pe *"
n=1
< . — p't " 5 s
or > b, sin20 pe "' =0i.e.,sin20p =0i.e.,p=nw20
n=1
Thus (vi) becomes  w(x, 1) =40 + x + ib“sin%e'“'” .(vii)
n=1
Using (iii), 30+%x=u(0.l)=40+x+ 3 b, sin 5
n=1
or —--10 Zb gin 2';

n=1
where b -—I (3‘ 10)mmdx--—(l+2cosmt)
nx
Hence from (vii), the desired solution is

u=40+x__2ng Zl+2°°°""sin"’°‘ - (nm/ 207"t

n 20

i)

By law of heat conduction, the rate of heat flow is proportional to the gradient of the temperature. Thus,
if the ends x = 0 and x =/ (= 100 cm) of the bar are insulated (Fig. 18.4) so that no heat can flow through the ends,
the boundary conditions are

du (0, )
dx

du (l,t)

® =0 for all ¢ wAid)

=0,

x=40+x iw)




Initially, under steady state conditions, ? =0. Its solution is u = ax + b.

Sinceu=0forx=0andu=100forx=! . b=0anda=1.
Thus the initial condition isu (x,0)=x O<x<l ..(idi)
Now the solution of (i) is of the form u (x, t) = (¢, cos px + ¢, sin px)e” ot .(iv)
Differentiating partially w.r.t. x, we get .
1‘ = (=, sin px + c,p cos px)e”™ ' .Av)
Putting x = 0, (24 =cpe®t =0 forant. [By (i)
0
& ;=0
Puttingx = in (), (3%) = - ¢,psin ple"*" for all 1. (By (i)
!

& e,p sinpl =0 i.e., p being # 0, either ¢, = 0 or sin pl = 0.
When ¢, = 0, (iv) gives u (x, t) = 0 which is a trivial solution, therefore sin pl = 0.
or pl=nr  or p=nnl, n=0,12..

Hence (iv) becomes u (x, t) = ¢, cos #e"’“"’"" .
the most general solution of (i) satisfying the boundary conditions (ii) is
uw, = 3 A, con I oOUE _p T A, con 2 M U (where A, =¢,) ...vi)
n=0 n=1
Putting t = 0,u (x,0)= Ay + 3 A,.oos% =x [by (iii)]
n=1

This requires the expansion of x into a half range cosine series in (0, 7).

!
Thus x-—+Za cos nnx/l whmaoz-?-jﬂxdt=l

and =2Io "ndx-—nz(cosnx 1)

=0, where n is even ; = — 4l/n’n?, when n is odd.

A= 9.'22. =l/2,and A, =@, =0 for n even ; = — 4l/n’x® for n odd.

Hence (vi) takes the form
ol C 41 ARX _-nieesr
u(xut)——2-+ Z ??-MTQ L4
n=13,..
« b A 3 1 (2n - 1) X _ 20y -1 elers® "
2 g z,: @1 1 s
This is the required temperature at a point P, distant x from end A SO

at any time .

Let P, P, be two points equidistant from the centre C of the bar so
that CP, = CP, (Fig. 18.4).
If AP, =BP,=x (say),then AP, =[-x.



Replacing x by / - x in (vii), we get the temperature at P, as

P ~e*(2n -1 't
I 4l 1 @n-Drl-x) — g
ul -x,t)= - - — cos e
2 x ; (2n -1)* !
& —*(2n -1 't
e 1 @Br-Dxx — 7
= L2 o e ..{viii)
2 x Z (2n -1)° !
2n-n(-x (2n —1) nx (2n - 1) mx
08 ——————=cos %x—x-f i

Adding (vii) and (viii), we get w(x, t) + u(l - x, ¢) = I = 100°C.
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